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A one-dimensional system of equimass particles coupled by identical nonlinear 
springs is studied. The equations of motion are expressed in terms of the normal coor- 
dinates of the corresponding linear system. Selection rules are developed for interactions 
among the modes, and the number of interaction terms in the modal equations is 
reduced byconsidering thecase of a singledominant mode.Theequations are considerably 
simplified by judicious approximation, and their validity checked by direct numerical 
computation. In terms of the resulting coupled Mathieu equations it is possible to 
investigate stability questions and to explain recent results of computational experiments. 
The bearing on ergodicity and time-correlation is discussed. 

1. INTRODUCTION 

Among the early problems run on the MANIAC I at Los Alamos almost 20 years 
ago was one suggested by Enrico Fermi. The computational capacity of this early 
computer was estimated to be sufficient for performing numerical experiments on 
the one-dimensional crystal studied by Peierls [l] in his classic paper. The plan 
was to numerically integrate the equation of motion of a linear array of 10-100 
equimass particles connected by nonlinear springs. The end particles would be 
immersed in reservoirs (in some unspecified way), and the average energy of each 
particle would then be used to determine the thermal conductivity of the system as 
a function of the form and magnitude of the spring nonlinearity. 

There seemed to be no particular reason for passing to the limit of a continuous 
system and then rediscretizing for numerical integration since the system to be 
modeled was already discrete and the effect of “Umklapp” terms [l] could not be 
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excluded. It was expected that the number of particles would be varied, and this 
effect was also studied. 

The program was set up (in machine language, of course) and tested by running 
the case in which the end particles were fixed in position and the springs were 
linear. A system of 64 particles was started in the lowest mode and integrated 
using the simple Euler’s method over about 20 periods to check the accuracy of the 
numerical scheme with a satisfactory result. At this point it was decided to run the 
same problem with a quadratic term in the force law for the springs still keeping the 
ends fixed so that the approach to equipartition of energy could be observed. The 
unexpected results of these calculations, which show no tendency toward ergodicity, 
are contained in the report [2] referred to as FPU in the literature. 

Since that paper there have been many studies of the FPU cases as well as the 
continuum model which have led to a fairly satisfactory understanding of certain 
of the original results. An interesting unpublished calculation was made by Tuck [3] 
quite early, one which brings home the nonergodic nature of the FPU case. In the 
original work, weak nonlinearities led to a quasirecurrence of the initial conditions 
to the extent that some 99 % of the total energy returned to the first mode, the one 
initially excited. Due to the inherent calculational error in the simple integration 
scheme being used, it was not possible to distinguish between the error and a 
real failure to attain the initial conditions more exactly so the computation was 
terminated. In a more accurate computation Tuck extended the run to find a 
somewhat lower peak for the energy in the first mode at roughly double the quasi- 
recurrence time. Further computation led to additional equally spaced diminishing 
peaks but then the peaks began to increase and finally achieved a value much closer 
to the initial state than had the first recurrence. This “superperiod” appears to 
belong to a smaller resonance denominator in the perturbation expansion than the 
one associated with the first recurrence. 

There have been some recent calculations [4-61 of the original problem with 
reservoirs to study the lattice thermal conductivity, but the major activity [7-151 has 
centered on the ergodic problem. An important development was the discovery 
[16-191 that there is a “region of stochasticity” where the FPU system exhibits a 
behavior quite different from the original results and more like an ergodic system. 
This has been verified and the boundary of the region has been further studied 
[20-231. 

When periodic or quasiperiodic motion of a dynamical system is the object of 
of study, it is most natural and useful to describe the system in terms of the normal 
modes of the linear system. In the case of nearest neighbor interaction, however, 
the description is simple in terms of the position variables but this simplicity does 
not carry over to the normal modes, most of which interact with each other. In 
this paper we carry out the transformation to normal modes and make successive 
simplifications to reduce the number of participating modes. 
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First, it is assumed that one mode is dominant so that its approximate behavior 
can be described independently of the changes in the remaining small amplitude 
modes. The observation that the modes which initially participate in the develop- 
ment of the system are those lying near the dominant mode allows a reduction in 
the number of equations that need to be considered. This simplification is tested 
empirically and shown to be a reasonable approximation. In terms of the simpler 
system, conclusions are drawn, one of the more important being the relation 
between the size of the nonlinear term and the onset of the instability of the 
dynamical equations which is a necessary condition for ergodicity. 

2. MODAL EQUATIONS OF MOTION 

The system to be studied consists of N + 1 particles labelled 0, 1,2,..., N from 
the left and all having the same mass. They are connected together into a one- 
dimensional system by identical springs and for the present purposes the end 
particles labelled 0 and N are fixed in position for all time. Dimensional units are 
chosen so that the particle masses and the linear coefficient (Hooke’s law constant) 
for the springs are both unity. The system coordinates are the displacements of 
the particles from their equilibrium positions denoted by X, for the particle labelled 
j and the corresponding velocities tij , positive displacements being measured to 
the right. For the present system, 

k&) = x0(t) = c&(t) = X&) = 0. (1) 

The force exerted on particle j by particle j - 1 because of the spring connection 
is given by 

F’ = Xj-1 - Xi + X(Xj_1 - Xj)” + p(Xj-1 - Xi)“, 

where h and p are constants and the equations of motion 

fj = X&l - 2Xj + Xj-1 + h[(Xj+l - Xi)” - (Xj - Xj-I)“] 

f I*[(Xi+1 - Xi)” - (Xj - Xid31 (j = 1, 2,..., N - 1) (2) 

follow from the Hamiltonian 

H = f [*F/2 + (xj - xj-,)‘/2 + A($ - Xj-1)~/3 + P(Xi - %-l)“/41. (3) 
j=l 

Due to the possible change in sign of the cubic part of the Hamiltonian, systems 
with nonlinearities arising from such terms can exhibit a “breaking of the chain” 
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and other anomolous behavior at large energies. Earlier studies included such 
systems but this paper will be confined to the case h = 0. 

Introduce normal modes through 

xi = i f (ak/wk) exp(--ia,k/N), 
k---N 

where ok = 2 sin(&/2N). We chose these slightly nonstandard variables in order 
to keep the nonlinear term as simple as possible. For x3 to be real, i.e., xj = x$*, 
we require ak* = a-k and the boundary condition (1) will be satisfied if ak = a-k . 
Substituting into the quartic term of the Hamiltonian, we find 

akak’ak”ak” 
wJ&pJk’wk” 

exp[--i7r& + k’ + k” + k”‘)/N] 

x [l - exp@rk/iV)][l - exp(irk’/N)] 

x [ 1 - exp(ixk”/N)][l - exp(irrk”/N)] 

= c aflk’ak”akn eXp[--iT(j - &)(k + k’ + k” + k”)/N], (5) 

where the sums extend overj and all k’s. The relation ak = a-k is used to eliminate 
the imaginary part of the exponential, and the j-sum becomes 

j cos[(j - $)(k + k’ + k” + k”‘) n/N] = N . D(k + k’ + k” + k”‘), (6) 

where D(0) = 1, D(i2N) = --I and D(a) = 0 otherwise. 
Finally, 

j (xi - x,-d4 = N c a#,*a,“a,-D(k + k’ + k” + k”), (7) 

where the right side sum is over all k’s 
The complete Hamiltonian becomes 

H = (N/2) c [@kbk)’ + ak21 + bN/4) 1 akak,ak”ak-D(k + k’ + k” + k”‘), (8) 

with the equation of motion for normal mode k, 

iik = -wk2ak - puk2 c akrak”ak-D(k + k’ + k” + k”) (9) 
k’k”k” 

or, in terms of the canonically conjugate pk = aH/&i, = (N/wk2) ri, , 

H = ; c [+ pk2 + Nak’] + @N/4) c akak*akk-ak’“D(k + k’ + k” + k”‘). (lo) 
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3. NUMEROLOGY 

Single Mode Initial Excitation 

In the case of a nonlinear term in the Hamiltonian, quartic in the coordinates, 
the D-function in (9) requires that for mode k to be excited by modes k’, k”, k”, not 
necessarily distinct, the following congruence must be satisfied: 

k = (k’ + k” + k”‘)(mod 2N), (11) 

where use has been made of the fact that k and -k are the same mode since ak 
and a-, satisfy the same equation. 

An excited mode kO(l k, / < N) can excite other modes given by 

k = (2j + 1) k,(mod 2N), (12) 

for any integer j. If a mode k is excited then k -i- 2k, can be excited by (11). Since 
k,, is excited initially (12) follows by induction. Relation (12) is also sufficient 
because from (11) odd multiples of k, can only excite another odd multiple of k, . 

Writing (12) as an equality, it is evident that both sides can be divided by 
d = (k, , N), the greatest common divisor, thus, replacing (12) by its irreducible 
form 

k/d = (3 + l)(Wd)[mod WV41, (13) 

where kO/d and N/d are now relatively prime. It is assumed from now on that (12) 
is in irreducible form so that (k, , N) = 1. This assumption is convenient since 
systems with the same irreducible form are dynamically similar. 

From (k, , N) = 1 it follows that (k, ,2N) = 1,2 according to whether k, is 
odd or even. For odd k, , 

(k, ,2N) = 1 = sk, + 2tN, (14) 

for some integers s and t from the Euclidean algorithm. It is clear s must be odd, 
and the second equality is just (12) with k = 1, from which it follows that all odd 
modes are excited from k, . If k, is even, hence, N odd, (k, ,2N) = 2 = sk, + 2tN. 
There is always a solution with odd s for ifs were even, then 

2 = sk, + 2tN = (s + N) k, + (2t - k,) N = s’k, + 2t’N (15) 

leads to an odd s’. Thus, we have (12) with k = 2. Let k, = 2, then from (12) all 
modes twice an odd integer are excited. Moreover, for each such, another solution 
of the congruence is k = 2(2j + 1 - N) G 2(N - 2j - l)(mod 2N), which is 
twice a distinct even integer since N is odd. Thus all even modes are included. 
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It follows immediately from the preceding that if k, = 1 and N = 2,3 then no 
other mode is excited. Similarly, if k, = 2 and N = 3 no further excitation occurs. 
These results may be combined and generalized to reducible k, , N by the following 
corollary. 

COROLLARY. If k, = 2N/3, 2N/4, or 2N/6 no further excitation occurs and k, 
is a stable mode. 

Multiple Initial Excitation 

If more than one mode is present initially, interactions take place which result 
in richer spectra. This is particularly true when initial modes have opposite parity, 
but even with modes of the same parity, the stability described previously may be 
lost. 

It suffices to consider only two of the initially excited modes-of opposite parity 
if possible. As before, assume the system is in irreducible form, i.e., if kOi and kOj 
are the two initial modes in a system of N + 1 particles, then the greatest common 
divisor d = (k,,i , kOj , N) = 1. 

The main result is: If koi and kOj are of opposite parity, all modes k are excited; 
if not, then all modes of that parity are excited. 

Consider first the case of opposite parity. Let k,i = u (ungerade) be the odd, 
and k,j = g (gerade) the even mode. From the congruence (1 l), excited states are 
given by 

k = (au + bg)(mod 2N), (16) 

where a, b are integers such that a + b is odd. The latter follows immediately by 
induction. 

For this case 

(u, g, 2N) = 1 = ru + sg + 2tN, (17) 

where r + s is odd or can be made so by: 

ru + sg = ru + gu + sg - ug = (r + g) u + (s - u) g = r’u + s’gg, (18) 

where r’ has the same parity as r but s’ has opposite parity from s, so r’ + s’ is odd 
[24]. Thus, (17) has the form of (16) with k = 1. It is clear how (11) can be used 
with k = 1 and an even mode to generate all modes. 

For two odd modes 

(v > % Y 2N) = 1 = rul + suz + 2tN, (19) 
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where I + s must be odd to satisfy this equation so we are assured of a solution of 

1 = (au1 + bu,)(mod 2N), (20) 

for a + b odd corresponding to (16). With k = 1 and no even modes, all odd modes 
and only odd modes can be reached with (11). 

Finally, with two even modes, 

(gl,gz,2N)=2=rg~+sg,+2tN, (21) 

where N must be odd and s can be made to have opposite parity from r by using 
(15), so that the solution, 

2 = (wl + kJ(mod 2N), (22) 

can be used with (11) to generate all even modes. 

EXAMPLE a. Let k, = 4, N = 18. Since (4, 18) = 2, 2 --+ k, ,9 + N, since k, 
is even, all even modes less than N are excited, namely: 2, 4, 6, 8. 

EXAMPLE b. Let k, = 4, N = 17. Irreducible. All even modes to k = 16 are 
excited. 

EXAMPLE c. Let k, = 3, N = 21. Thus (3,21) = 3, 1 + k, , 7 + N; all odd 
modes 1, 3, 5 excited. 

EXAMPLE d. Let k, = 5, N = 22. Irreducible. All odd modes 1, 3 ,..., 21 
excited. 

EXAMPLE e. Let k, = 5, N = 15. Since k, = (2N/6), this is a stable mode, no 
others are excited. 

EXAMPLE f. Let k,, = 4, k,, = 6, N = 22. Since (4, 6, 22) = 2, 2 + k,, , 
3 - k,, , 11 -+ N; all states of irreducible form are excited; all even states of 
reducible form excited. 

4. COMPUTATIONAL SCHEME 

The numerical work was performed on the MANIAC II at the Los Alamos 
Scientific Laboratory. Its characteristics are implied by its multiplication time and 
memory access of 6~‘s and 3p’s, respectively. More important is the convenience 
and directness afforded by the MADCAP programming language [25]. Single 
precision is represented by 43 binary bits (-13 decimal digits). Full precision in the 
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initial conditions was achieved by first using double precision arithmetic and then 
rounding to standard word length. 

Some preliminary numerical experiments were made to determine a satisfactory 
integration scheme. Several Runge-Kutta methods were examined; using the 
total energy of the system as a criterion, it was found that an approach due to 
Butcher [26], specifically his formula 3, was sufficiently accurate with integration 
steps of dt = 0.01 that the truncation error was of the same order of magnitude 
as the rounding error. Even for long runs of several thousand time units and for 
relatively large nonlinear terms, the energy check rarely exceeded one part in 105, 
and was usually much better. Moreover, if the initial conditions, i.e., the initially 
excited modes, were of one parity, that parity was retained throughout the 
calculation; thus, checks on the error-free operation of the computer were available. 
In addition, there was a more quantitative control over the introduction of small 
amounts of initial modes of opposite parity-so-called seeding. 

In general, the one-dimensional displacement coordinate xi (from equilibrium) 
and the associated velocity L$ were taken as dependent variables. At regular time 
intervals, Fourier analyses of these coordinate and velocity profiles were made so 
as to determine modal amplitudes ub and d, . From these, the uncoupled linear 
modal energies were obtained. 

It was of interest to examine the behavior with time of the nonlinear modal 
energies including the coupling terms. The energy terms associated with each 
mode were those that corresponded to terms occurring in the modal equations 
of motion. The number of such terms increases rapidly with N; however, it was 
straightforward to compute such modal energies for N < 8. 

5. INTEGRATION OF MODAL EQUATIONS 

The FPU and later studies seem to show that for small nonvanishing values of 
the nonlinear coefficient the systems are periodic to the accuracy of the calculations. 
This is especially clear in some of the recent work [18, 221, where it is shown by 
means of extrapolation of the relation between the lifetime of an initially excited 
single mode and the nonlinear parameter. The situation is that we have a system 
where, at ~1 = 0, there are normal modes with an infinite lifetime. By continuity, 
it is expected that by taking p sufficiently small any arbitrarily given lifetime can 
be exceeded, but the unexpected result is that this can be achieved for 
a~>M>O,forsomeM. 

Although the normal modes occupy a special position, being the infinite lifetime 
states for p = 0, it is likely that there are similar states for other values of ~1. 
Configurations which are stable for nonzero values of p have been found and are 
called “solitons” [27, 281. It is possible that there are disjoint ranges of t.~ over 
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FIG. 1. Plot of three modal energies for the system and two approximations. The full system 
was integrated using the original coordinates, whereas the 5- and 3-mode systems were integrated 
directly in terms of the modal amplitudes. The value of u (cf., Eq. (27)) for these systems was 
0.042. 
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5-MODE 

3-MODE 

TIME 
FIG. 2. A similar plot to Fig. 1 with a value of D = 0.085. 

which the lifetimes of these states are infinite or at least very long. The norma 
modes are the simplest, however, and in view of this discussion may not be so 
special as they first appear. 

It would be useful, therefore, to study the system in terms of the uk variables. 
Unfortunately, the number of terms in the normal mode equations is of order N3 and 
the equations become unmanageable for reasonably sized N. The usual procedure 
for integrating the full system is to carry out the dynamic calculation in coordinate 
space and then transform to the ak variables when needed for output. 
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Of particular interest is the system [22] in which most of the energy was initially 
in mode 11 with N = 16. It was observed that for small p, the bulk of the energy 
was retained in the 1 lth mode for a long time before energy sharing commenced. 
The present paper is concerned mainly with that system, specifically the early 
phases. 

The final degradation of mode 11 occurs because some of the modes which were 
initially small grow to a size comparable to mode 11. It is found that the modes 
that are the main participants in this action are the neighboring modes 9, 10, 12, 
and 13. By restricting our attention to five modes, the number of nonlinear terms 
in the modal equations is reduced to 49. For the system involving modes 10, 11, 
and 12 the number of terms is 10. It, therefore, becomes possible to integrate the 
modal equations directly and the results for 5-mode and 3-mode systems are 
shown for two values of p in Figs. 1 and 2 together with the integration of the full 
equations carried out in coordinate space. The 3-mode system is, for example, 

ii, + wk2(ak + 3pfk) = 0 (k = 10, 11, 12), (23) 

where 

ho = dl(2alo + al,) + aloG%, + afo>, 
A1 = aE + 2adah + aloa12 + aF2), 

fi2 = &h2 + alo) + a12Wo + 4,). 
(24) 

Figure 1 describes a system in which mode 11 is stable until modes 10 
and 12 appear; at this point mode 11 decays and a copious interchange of energy 
among the modes occurs, a process referred to as “induction.” The detailed corre- 
spondence of the full system with the 3-mode and 5-mode systems is seen to be 
quite acceptable, at least to induction time. 

The system in Fig. 2 exhibits some new features. There are some interchanges 
between mode 11 and modes 9 and 13. This is precisely the behavior found in the 
FPU cases and a quasiperiodicity might be expected. Again, however, the even 
modes adjoining 11 grow and cause induction at the last part of the run. Although 
the detailed correspondence is not so good at this larger value of 0, the 
induction by mode 10 is qualitatively correct. Mode 9 appears earlier in the full 
system as compared to the 5-mode system owing to the presence of mode 1 which 
couples to 9 according to (11). The important occurrence is the first appearance 
of the even modes adjoining mode 11. 

In all of these runs a small amount of energy (m10-17) was placed in the even 
modes initially, The even modes are prohibited from participating if they start with 
zero amplitude by the results of Section 3. It is found [l&29] that the growth of the 
even modes is exponential for sufficiently large CL. A logarithmic plot of a typical 



76 BIVINS, METROPOLIS, AND PASTA 

FIG. 3. Logarithm of the modal energy for CT = 0.056 with initial seeding in al1 modes. The 
dip in mode 11 and the erratic behavior around f = 650 is probably an FPU cycle before in- 
duction at t = 1200. 

FIG. 4. Logarithm of the modal energy for D = 0.056 with initial seeding of mode 8. 

w I -12 - 

0 100 200 300 400 500 600 7dO 800 900 1000 
TIME 
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even mode growth is given in Figs. 3 and 4. It is interesting to note that even when 
the 8th mode only is “seeded” initially, modes 10 and 12 grow exponentially and 
cause the eventual decay of 11 as shown in Fig. 4. 

6. COUPLED MATHIEU EQUATIONS 

Equations (23) for three modes and the 5-mode equations describing the inter- 
action of a subset of the modes give a reasonable description of the main features 
of the system, particularly the growth of the small amplitude modes which 
eventually cause the decay of the principal driving mode. In this section further 
simplifications of the reduced Eqs. (23) will be carried out. Although this will 
bring about a somewhat poorer quantitative agreement with the full integration 
scheme, the qualitative features of the system are preserved and the analytic 
tractability of the resulting equations will be of heuristic value in understanding the 
behavior of these systems. 

It was possible to reduce the number of modes under consideration because the 
system was one in which a single mode was dominant, and, at least for the particular 
mode chosen, it was observed that only neighboring modes participated in the 
initial phases. Besides reducing the number of equations, the dominance of a single 
mode allows further approximations, namely the retention of only those nonlinear 
terms containing the principal mode as a cubic or quadratic in which case the 
system (23) becomes: 

l& = 2 
-%0~10 - 3~~:,&(2~,, + ~~3, 

L-q1 = 2 
-Wll% - 3P&& ? (25) 

. . 
42 = -42a12 - %d2aZa12 + alo). 

The energy in the 11 th mode is substantially constant until the other modes 
reach a significant size so the energy integral for that mode can be approximated 
by 

~K411~ll)2 + dl + b411 = wa:, + #EL&9 (26) 

where cyll = all(O) and the system is initially at rest. Now let 

all = al1 cm $7 
0 = &41 3 

m = u/(1 + 2u), 

7 = (1 + 2C7)1/2 WI& 

(27) 
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then (26) becomes 
(dc$/d~)~ = 1 - m sin2 +, (28) 

describing an elliptic function of the first kind with period 

T, = (1 + 2u)l/2 wllT = 4 s 
7712 d4 

o (1 - m sin2 4)1/2 z 27J(m). (29) 

The corresponding angular frequency is given by 

X2,, = 27r/T = (1 + 2~)l/~ w,,/J(m). 

Using a,, = all cos 4 in the remaining two equations of (25) we find 

(30) 

lilO = 2 
- WIOa10 - 240+Js2 4)GNo + %2), 

(31) . . 
42 = -f2a12 - 24,4cos2 $)@712 + a3. 

These equations were integrated with (28) until a,, and aI2 became comparable 
with ull . The growth of these modes is exponential and the logarithm of the rate 
measured in decades per thousand time units is plotted as a function of u and 
marked “coupled system” in Fig. 5. Additional values for runs using the complete 

30- 

. UNCOUPLED (ELLIPTIC1 

o- 

FIG. 5. Comparison of growth rates for different approximations to N = 16 coupled and 
uncoupled systems. 

set of equations and the reduced set of the last section are also shown. The shape 
of this curve is to be compared with Fig. 10 of [22]. 

If + in (31) can be approximated as Q;2t with constant driving frequency 52, which 
is the case for small u, then the system consists of two coupled Mathieu equations. 
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Letting T = Qt be the independent variable, and using (30), we bring Eq. (31) to 
the form: 

40 + V(~>(~~0/~d12 [a10 + mh + m cm 27(2alo + u12)] = 0, 

42 + w4(QJ,,/%l)12 [al2 + m&l + m cm 27(242 + a,#))] = 0. 
(32) 

If these equations are decoupled by removing a u12 from the first equation and a,, 
from the second, each takes on the canonical form of a Mathieu equation: 

~+(u+2qcos2T)y=0, (33) 

where for the first, for example: 

(34) 

The growth of a mode will depend, in this case, on how close the quantity a is 
to unity, and on the magnitude of q. The growth rate can be found on the chart of 
the characteristic exponent shown in Fig. 6. To first order, the boundaries of the 
instability region are given by a = 1 f q [30]: 

m4 4%1” - (1 + Mw+J132 = 1 zt ~b/%d2, 
m = 2[1 - (w,,/w~~)~], 2/3[w,,/~,~)~ - l] = 0.19, 0.08, (35) 

0 
FIG. 6. Growth rate exp(pT) for unstable regions of Eq. (33). 

581/12/r-6 
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so that exponential growth of mode 10 can be expected to begin at m = 0.08, 
hence, u = 0.095. The uncoupled equations were integrated numerically and the 
results plotted in Fig. 5 showing good agreement with the calculated value. 

The important point is that the behavior of the uncoupled cases is quite different 
from the coupled cases as brought out in Fig. 5. This can be understood in the 
following way. The natural frequencies of the mode 10 coupled with mode 12 
system will vary between c+, and wr2 , roughly, according to 

slowly varying around the average (w10 + wJ2, a frequency much closer to wll 
than was w10 or wX2. It can be expected, therefore, that instability will occur for 
a smaller value of cr and the growth rates will increase more slowly. In fact, a 
formula of the form (35) with (wiO + w1,)/2w,, substituted for w/wl, can be 
conjectured: 

UWA 
[( 

wf~~,, )’ - I] = A [sec2 & - 11 w A & , (36) 

depending only on N and independent of the driving mode. Several computer runs 
with N = 8 and N = 32 were made for comparison with the N = 16 runs and 
are plotted in Fig. 7. Runs at N = 32 but without the approximation C$ = Qt 
(i.e., the elliptic equation for mode 11 was integrated at each step) were made to 
show the agreement for small u and are also shown. For A = 2 we find uC7 = 0.04, 

0 0.02 0.04 0.06 0.06 0.10 0.12 a14 0.16 

FIG. 7. Growth rate for different values of N and for q5 = G’t approximation. 
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0.01, 0.0025 for N = 8, 16, 32, respectively, and in substantial agreement with the 
computed values. Some of the values used for Figs. 5 and 7 are given in Table I. 

In the equation of motion (9), it is evident that a coefficient of the linear term 
could be given any value, except 0, by an appropriate change in the time scale. All 

TABLE I 

Comparison of Growth in Decades/Thousand Time Units for Full Equations, SMode, 
3-Mode, Coupled Mathieu with Elliptic Function Driver, and Coupled Mathieu with 4 = Rr. 

Coupled Coupled 
Full 5-mode 3-mode Mathieu Mathieu 

0 equations system system system Q = Qt 

0.021 1.8 9.3 - 7.0 7.0 
0.042 12.6 14.8 14.9 12.5 11.2 
0.064 - 17.4 - 15.5 14.8 
0.085 17.0 19.9 20.5 18.5 16.9 

FIG. 8. Variation of the dominant frequency with D with and without linear term. 
w 
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cases will, thus, have been considered if the values 0 and 1 for the linear coefficient 
are investigated. Moreover, when the linear term is absent, changes in ,u or in 
initial amplitudes are equivalent to a change in time scale so that, given N, only 
a single problem need be run for a given distribution of the initial excitation. The 
drawback of studies on problems with no linear term is that the plots of the 
linear modal energies contain a kinetic energy term only and the graphs tend to be 
more jagged because they fail to account for an appreciable amount of energy. 

In the case of no linear term or if u > 1, then m -+ + and J(m) + 1.18; thus, 
asymptotically, IR,, w 1.20(a)1/z wll , equality holding when the linear coefficient 
is 0. A plot of Q/W vs (u)lj2 for the cases of linear coefficients 0 and 1 is given in 
Fig. 8. 

7. GROWTH OF SMALL MODES-STABILITY 

It is, of course, only under the unusual circumstances of stability given in 
Section 3 that a single mode will not excite others. In general, when a single mode 
is excited at one phase of the oscillation other modes will be seen if a snapshot is 
taken at a different phase. Moreover, one can expect modes not prohibited by the 
selection rules of Section 3 to begin to grow. The manner in which these other 
modes grow is crucial to any discussion of ergodicity. 

The notions of irreversibility and ergodicity are connected with the behavior, over 
long times, of the difference between trajectories in phase space of two systems 
whose initial states differ only slightly. The exponential divergence of such 
trajectories, in time, signals the irreversible behavior of the system and also forms 
a basis for the expectation that the mapping of at least one small neighborhood will 
inhabit larger and larger regions of the phase space and even at an exponential 
rate. The time scale for ergodicity is as relevant as its existence since a system which 
resists ergodicity over times comparable with those appropriate to the observed 
physical phenomena cannot be assumed to be ergodic in deriving the description 
of those phenomena. 

To study this behavior one could form the difference of the equations of motion 
describing two initially close systems. Alternatively, a small amount of energy could 
be put in modes otherwise forbidden by the selection rules. Thus, the energy 
in these “seeded” modes can be studied as a function of time and compared with 
the unperturbed situation in which the energy in those modes is strictly zero. This 
is the case studied here with the further simplifying assumption that only one mode 
is excited initially. In the event that more than one mode is initially excited a strong 
interchange of energy will cause changes in the frequencies of those modes since 
they are amplitude dependent and the consequent variation of Sz complicates the 
simple Mathieu analysis given in Section 6 so that the critical value of a is thereby 
changed. No experiments were performed along these lines. 
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On the other hand, the goal of the present study is to show how a highly ordered 
system randomizes, in some sense, so that the choice of an initially ordered system 
with a single mode excited is quite natural. 

The two systems are the set of Eq. (9) and the same set with uk replaced by 
a, + cle . The differences of these equations are 

. . Ek = -oIe2Ek - 3 pwk2 c +,akeab-D(k + k’ + k” + k”$ (37) 
k’k”k” 

where terms quadratic and cubic in Ek have been dropped. If we restrict the ak to a 
single driving term we are led to equations of the type used in the 3-mode and 
5-mode systems of Section-5. 

The study of two initially close systems is equivalent to the consideration of the 
effect of initial error in the specification of the system. The growth of E,(O) seed is 
the growth of initial error of this magnitude and the induction time is also the time 
when the system has “forgotten” the initial state. Any intrinsic uncertainty in the 
initial state will determine a “memory time” for the system and configurations 
further apart in time than this amount will be uncorrelated. An initial ball in phase 
space can be expected to grow exponentially in at least one dimension for values 
of u above some critical value. 

On the other hand it should be mathematically possible, subject to the restrictions 
imposed by the growth of roundoff error, to integrate the equations backward 
in time (--dt+ At) to the initial state. This is possible even from the so-called 
stochastic region. How can this “undoing” of truncation error be understood? 

Consider an unstable system after a period of exponential growth. The growth 
is associated with the largest positive eigenvalue of the dynamical transforma- 
tion from one time to the next in the integration, at least in some average way. 
It follows that after a long time a state of the system has been reached in which 
the eigenvector belonging to that eigenvalue is dominant and other eigenvectors 
have been suppressed. If now all of the velocities are reversed in that state, the 
dynamical reversibility of the equation of motion guarantees that the new eigen- 
vector will belong to an eigenvalue which is the negative of the previous one. The 
equations of motion are the same since our system is symmetric in the time. 

If, at the time the integration is reversed, a perturbation due to machine roundoff 
occurs so that some of the eigenvector belonging to the largest positive eigenvalue 
for the reversed equation is introduced then that eigenvector will grow on the 
backward integration at the same rate as the observed growth on the forward 
integration. Exponential growth of a perturbation means a constant propagation 
velocity within the machine representation of numbers from the less significant to 
the more significant bits. 

In Fig. 9 the growth of the unstable modes associated with u = 0.042, N = 16, 
and driving mode 11 is plotted to t = 1500, well into the “stochastic” region which 
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I I I I I I I I 
0 2liO 400 600 600 1000 1200 MOO 1600 

TIME 
FIG. 9. Average of the logarithms of the energies in modes 10 and 12 plotted for a forward 

integration to t = 1500 and integrated backward from t = 1200 and r = 1500. 

TABLE II 

Modal Energies on Backward Integration 

Mode 
Initial 
energy t = 1200 t = 1500 

Return 
from 
1200 

Return 
from 
1500 

1 3.1 x lo-‘9 

2 1.2 x 10-18 

3 2.7 x IO-‘* 

4 4.7 x 10-1s 

5 7.1 x 10-18 

6 9.9 x 10-18 

7 1.3 x 10-I’ 

8 1.6 x 10-l’ 

9 1.9 x 10-l’ 

10 2.2 x 10-l’ 

11 20.57 

12 2.7 x 10-l’ 

13 2.9 x 10-l’ 

14 3.1 x 10-I 

15 3.2 x 10-l’ 

6.4 x 1O-5 5.1 x 10-b 

1.6 x 1O-B 2.5 x 1O-J 

7.5 x 10-g 3.5 x 10-S 

5.2 x lo-l2 1.9 x IO-’ 

1.5 x 10-J” 8.9 x 10-d 

2.6 x lo-l4 3.7 x 10-a 

2.8 x 10-l’ 1.1 x 10-s 

6.4 x 1O-8 4.1 x 10-a 

8.4 x 1O-6 3.8 x 10-l 

1.1 x 10-Z 4.2 

21.05 11.4 

1.6 x lo-% 4.6 

1.8 x 10-s 5.6 x 10-l 

8.7 x 10-Q 9.9 x 10-a 

2.1 x 10-l’ 1.0 x 10-S 

1.7 x 10-l’ 

4.2 x lo-l1 

1.3 x 10-I’ 

9.2 x lo-l8 

5.1 x 10-18 

9.8 x 10-18 

1.4 x 10-l’ 

1.4 x 10-14 

1.4 x lo-‘8 

1.9 x 10-a 

20.57 

1.6 x lO+’ 

8.0 x lo-l4 

1.3 x lo-14 

3.2 x lo-” 

4.5 x lo-’ 

1.5 x 10-S 

4.2 x 1O-6 

1.3 x 10-T 

1.4 x 10-s 

5.5 x 10-a 

4.2 x 1O-B 

3.0 x 10-d 

6.7 x 1O-8 

6.2 x 10-l 

19.04 

9.3 x 10-l 

1.7 x 10-a 

7.5 x 10-d 

1.3 x 10-S 



NONLINEAR COUPLED OSCILLATORS 85 

occurred at t = 1350. The system was integrated backward in time from t = 1500 
and t = 1200 with the results shown in the figure and in Table II. Each of the curves 
for the return integration can be extrapolated to the time at which its integration 
was reversed and the ordinate will be the magnitude of the initial roundoff error. 
Extrapolation is necessary because the initially small values for the return leg are 
lost in the large dominant forward leg. The slope of the return graph is just the 
negative of the forward slope, belonging as it does, to the negative eigenvalue. 

It is necessary that convergent systems be associated with each divergent system. 
From another view it arises from the conservation of density in phase since for 
each representative point that leaves a ball in phase space one must enter. The 
presence of a dissipative term does not change the mathematical reversibility if 
the positive dissipation is replaced by negative dissipation as necessary, although 
it may be physically unrealistic. That is, the system with -t + t is the reversed 
system and this involves a reversal of the sign of the dissipative term, in general. 

In fact, for our initial conditions of zero velocity the past and future are symmetric 
so a divergent sytem must have been convergent in the past, at least with respect 
to the divergent mode under consideration. 

8. CONCLUDING REMARKS 

One result of the analysis is that the Mathieu term which is proportional to the 
square of the driving mode amplitude eventually dominates a forcing term propor- 
tional to the cube of driving mode amplitude even though the forcing term is 
much larger. A driving mode 11 gives a forcing term which should drive mode 1, 
and, indeed, mode 1 did grow in our system but a Mathieu term still dominated 
in the end. 

If nonlinear terms proportional to c-& and C& are retained, the equation of motion 
for mode 1 takes on the form (neglecting a,) 

iI + wl%,(l + 6/.4,) = /.KL&:, . (38) 

The computer results show that the forcing term on the right side of (38) determines 
the early behavior of the system, but eventually Mathieu terms in the total system 
become dominant. This forcing kind of resonance is the one which gives rise to 
the FPU behavior and has been used in the Wigner-Brillouin perturbation scheme 
[7] to describe that phenomenon. A study of stochasticity based on resonance with 
forcing terms is given in [19], but the effect of the Mathieu resonance would have 
to be included in a complete theory. 

Forcing terms cause excitations whose amplitudes depend on how close the 
forcing frequency is to a natural frequency. At exact resonance the excitation is 
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a secular one which grows linearly in time as compared to the exponential growth 
of the Mathieu term. These considerations differ from the usual concerns in systems 
of this kind in that attention is focussed on the secular terms and on the instability 
growth instead of periodic and quasiperiodic components of the system. This 
circumstance arises, of course, from the goal of describing the ergodic behavior 
of the system and the unpredictability over long times rather than short-term 
predictable behavior. 

Attention has been confined to the quartic nonlinear term of the Hamiltonian. 
The behavior with the cubic term included might be quite different and should be 
studied, together with higher order nonlinear terms. The Mathieu analysis is valid 
for the cubic nonlinearity, but the resonance is no longer subharmonic and is at 
a = 4 in (33) which is a narrower resonance. In addition, the cubic nonlinearity 
relates a driving mode k to a forcing term at mode 2k, while the D-function connects 
k to mode k/2 through subharmonic Mathieu resonance. 

The connection between the dimensionless Hamiltonian (3) and a typical physical 
lattice is discussed in [4, Appendix A]. A system of particles of mass 30 amu with 
an equilibrium separation of 3 x IO-* cm and a sound velocity of 3 x lo5 cm/set 
corresponds with dimensionless units of 

time: lo-l3 sec. 9 
energy = kT: 4.5 x lo-l2 erg; 
temperature: 3.25 x 104 K. 

In [4], N = 100, T = 300, and the overall a was about 0.1 for the quartic term. 
If it is assumed the principal mode had about 10 % of the energy, its u would be 
0.01 and at that value nonlinear effects gave rise to a finite conductivity in the 
computer experiment. For N = 100, u = 0.01 is well into the Mathieu region for 
the quartic. One must be careful, of course, to distinguish between heuristic 
experiments such as the present one designed to give information on the principles 
involved and true models of a physical system. The heuristic models generally 
involve far less computation but results must be examined with care and should 
be used to guide the theory and suggest further computation. 
Art. 566 Art. 566 
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